Strategic Fuels Blending Management & Technology

Self-Study Training Seminar Manual

SAMPLE

COURSE DIRECTOR

Dr. Suresh S. Agrawal
President
Offsite Management Systems LLC
Houston, Texas, USA

Offsite Management Systems LLC
Consultant and Automation Solutions Provider for Refinery Offsite Operations
Redefining Excellence™

3311 Stoney Mist Dr., Sugar Land, Texas, USA 77479
Tel: (281) 650-3707, Fax: (866) 450-4035
Email: info@globaloms.com, Web: www.globaloms.com

© 2000-2015 Offsite Management Systems LLC, All Rights Reserved
No parts of this manual can be reproduced and distributed in any format.
Strategic Fuel Blending Management and Technology

Table of Contents
Seminar Agenda

Day-1 Overview of Blending operation

Session-1 Overview and fundamentals
1 Overview of Refining
2 Refinery Offsite Operations
3 Fuel Blending Operations in Refining
4 Blending Problems and Challenges

Session-2 Blending field equipment
5 Blenders Configurations
6 Tank Farm and Automatic Tank Gauging System
7 Pumps, MOV's and Control Valves
8 Additives Control and Monitoring
9 Blend Header Design Considerations

Session-3 Qualities Analysis and Measurements
10 Quality Relationships and Measurements
11 Lab Analysis of Stock and Product Qualities
12 Online Analysis of Stock and Header Qualities
13 Model Based Tank Qualities Measurement

Session-4 All about octane and its measurements
14 The Mysteries of Octane
15 Octane Measurement by Knock Engine
16 Integrated Analyzers Technology and Applications
17 Octane Measurement by Spectrum based technology
18 Comparison of Knock engine versus Spectrum based methods
19 NIR and NMR versus CFR analyzers - Selection and Cost Effectiveness
Day-2 Advanced Blend Control, Optimization and Planning

Session-1 Linear and non-linear Blend Models
20 Linear Blend Models
21 Non-linear Blend Models
22 Methods to Handle Blend Non-linearity
23 Control Matrix of Qualities
24 Spectrum based Blend Indexes

Session-2 Blend Optimization and Specifications
25 Advanced Blend Control Strategy
26 Blend Optimization
27 How to estimate and update Blending values
28 Gasoline, Diesel and Fuel Oils Specifications
29 Biofuels - A perspective Part-I Gasohol
30 Biofuels - A perspective Part-II Biodiesel

Session-3 Regulatory Blend Control
31 Optimum Blend Control System Strategy
32 Regulatory Blend Control Operations
33 Blend Trim Control
34 Refinery-wide Planning & Scheduling

Session-4 Offline Blend Optimization and Planning
35 Ethanol Blending
36 Offline Blend Planning and Optimization
37 Demonstration of An Offline Blend Optimizer System
38 Lab Exercise to solve an LP problem of a small refinery
Strategic Fuel Blending Management and Technology

Day-3 Blending Project Justification and Implementation

Session-1 Online Blend Control and Optimization
39 Advanced Online Blend Control & Optimization
40 Control and Optimization of run-down blending system
41 Data Reconciliation and Feedback
42 Technology Set of Hardware and software
43 System Architecture - Integration and Interfaces

Session-2 Blending Project Justification
44 Where and how to start
45 Methodology to Assess the Current State of Blending
46 Identifications of Automation Areas
47 The Quality giveaway - Concept, Cost and reduction Benefits

Session-3 Blending Project Implementation
48 Project Implementation Phases & Strategy
49 How to realize and sustain benefits
50 Required Enterprise Changes

51 Special Topic - Blending and Hydrocarbon Management

Session-4 Wrap-up and Winding down
52 Putting it All Together
53 Discussion Forum - Individual Refinery Blending Operations
 Feedback and Certificate Awards
OMS-02 Strategic Fuels Blending Management and Technology Training Curriculum

Day 1 Overview of Blending Operation

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Overview and fundamentals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1</td>
<td>Overview of Refining</td>
</tr>
<tr>
<td></td>
<td>Refinery Offsite Operations</td>
</tr>
<tr>
<td></td>
<td>Fuel Blending Operations in Refining</td>
</tr>
<tr>
<td></td>
<td>Blending Problems and Challenges</td>
</tr>
</tbody>
</table>

Day 2 Advanced Blend Control, Optimization and Planning

<table>
<thead>
<tr>
<th>Session 2</th>
<th>Linear and non-linear Blend Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 5</td>
<td>Linear Blend Models</td>
</tr>
<tr>
<td></td>
<td>Non-linear Blend Models</td>
</tr>
<tr>
<td></td>
<td>Methods to Handle Blend Non-linearity</td>
</tr>
<tr>
<td></td>
<td>Control Matrix of Qualities</td>
</tr>
<tr>
<td></td>
<td>Gasoline, Diesel, and Fuel Oils Specifications</td>
</tr>
</tbody>
</table>

Day 3 Blending Project Justification and Implementation

<table>
<thead>
<tr>
<th>Session 3</th>
<th>Online Blend Control and Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 9</td>
<td>Advanced Online Blend Control & Optimization</td>
</tr>
<tr>
<td></td>
<td>Control and Optimization of run-down blending system</td>
</tr>
<tr>
<td></td>
<td>Data Reconciliation and Feedback</td>
</tr>
<tr>
<td></td>
<td>Technology Set of Hardware and software</td>
</tr>
<tr>
<td></td>
<td>System Architecture - Integration and Interfaces</td>
</tr>
</tbody>
</table>

Session 2 Blending Field Equipment

<table>
<thead>
<tr>
<th>Module 2</th>
<th>Blenders Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tank Farm and Automatic Tank Gauging System</td>
</tr>
<tr>
<td></td>
<td>Pumps, MOV’s and Control Valves</td>
</tr>
<tr>
<td></td>
<td>Additives Control and Monitoring</td>
</tr>
<tr>
<td></td>
<td>Blend Header Design Considerations</td>
</tr>
</tbody>
</table>

Session 3 Qualities Analysis and Measurements

<table>
<thead>
<tr>
<th>Module 3</th>
<th>Quality Relationships and Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lab Analysis of Stock and Product Qualities</td>
</tr>
<tr>
<td></td>
<td>Online Analysis of Stock and Header Qualities</td>
</tr>
<tr>
<td></td>
<td>Model Based Tank Qualities Measurement</td>
</tr>
</tbody>
</table>

Session 4 All about Octane and its Measurements

<table>
<thead>
<tr>
<th>Module 4</th>
<th>The Mysteries of Octane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Octane Measurement by Knock Engine</td>
</tr>
<tr>
<td></td>
<td>Integrated Analyzers Technology and Applications</td>
</tr>
<tr>
<td></td>
<td>Octane Measurement by Spectrum based technology</td>
</tr>
<tr>
<td></td>
<td>Comparison of Knock engine versus Spectrum based methods</td>
</tr>
<tr>
<td></td>
<td>NIR and NMR versus CFR analyzers - Selection and Cost Effectiveness</td>
</tr>
</tbody>
</table>

Session 4 Offline Blend Optimization and Planning

<table>
<thead>
<tr>
<th>Module 8</th>
<th>Refinery-wide Planning & Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Offline Blend Planning and Optimization</td>
</tr>
<tr>
<td></td>
<td>Demonstration of An Offline Blend Optimizer System</td>
</tr>
<tr>
<td></td>
<td>Lab Exercise to solve an LP problem of a small refinery</td>
</tr>
</tbody>
</table>

Session 4 Wrap-up and Winding down

<table>
<thead>
<tr>
<th>Module 11</th>
<th>Putting it All Together</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discussion Forum - Individual Refinery Blend Operations</td>
</tr>
<tr>
<td></td>
<td>Feedback and Certificate Awards</td>
</tr>
</tbody>
</table>

Notes: Each topic duration is 20-30 minutes. Total number of slides are 800-
Next enclosed is a sample slides from session-3 of the curriculum.
Fuel Blending
Operations in
Refinery
Overview

- Products Yield
- Types of Blending
- Gasoline Blending
- Diesel Blending
- Kero Blending
- Fuel Oils Blending
- Lube Oils Blending
- Naphtha Blending
Products Distribution

<table>
<thead>
<tr>
<th>Product</th>
<th>Gallons</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Still Gas</td>
<td>1.89</td>
<td>4.26%</td>
</tr>
<tr>
<td>Liquefied Refinery Gas</td>
<td>1.76</td>
<td>3.96%</td>
</tr>
<tr>
<td>Naptha for Feedstocks</td>
<td>0.63</td>
<td>1.42%</td>
</tr>
<tr>
<td>Special Naphthas</td>
<td>0.13</td>
<td>0.29%</td>
</tr>
<tr>
<td>Kerosene</td>
<td>0.17</td>
<td>0.38%</td>
</tr>
<tr>
<td>Finished Aviation Gasoline</td>
<td>0.04</td>
<td>0.09%</td>
</tr>
<tr>
<td>Kero-Type Jet Fuel</td>
<td>3.99</td>
<td>8.98%</td>
</tr>
<tr>
<td>Finished Motor Gasoline</td>
<td>19.69</td>
<td>44.34%</td>
</tr>
<tr>
<td>Distillate Fuel Oil</td>
<td>9.7</td>
<td>21.84%</td>
</tr>
<tr>
<td>Other Oils for Feedstocks</td>
<td>0.5</td>
<td>1.13%</td>
</tr>
<tr>
<td>Residual Fuel Oil</td>
<td>1.76</td>
<td>3.96%</td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>2.14</td>
<td>4.82%</td>
</tr>
<tr>
<td>Asphalt and Road Oil</td>
<td>1.34</td>
<td>3.02%</td>
</tr>
<tr>
<td>Lubricants</td>
<td>0.46</td>
<td>1.04%</td>
</tr>
<tr>
<td>Miscellaneous Products</td>
<td>0.17</td>
<td>0.38%</td>
</tr>
<tr>
<td>Waxes</td>
<td>0.04</td>
<td>0.09%</td>
</tr>
<tr>
<td>Total</td>
<td>44.41</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

1 BLS = 42 Gallons gains Volume due to decrease in Densities of Products.
Types of Products Blending

- Gasoline (Mogas)
- Diesel (Middle-Distillate)
- Kerosene
- Fuel Oils
- Lube Oils
Gasoline Blending

- **Stocks**
 - Usually 6-12 in number, e.g. Naphtha, Reformate, FCC, HDS, Isomer, Alkylate, Butane, Isopentane, Merox, MTBE (The stocks are produced by various refinery process units)

- **Products**
 - Leaded and Unleaded (leaded being phased out worldwide)
 - Regular - 78-82
 - Premium - 83-90
 - Super Premium - 91-98 (Octane Grades)

- **Specifications**
 - RON, MON, RDOI, RVP, 10%, 50%, 90%, S, Arom, Ole, Bnz, TOx, VOC, Lead

- **Mode**
 - Tanks-to-Tank Inline Blending (Infeasible to blend in Run-down mode)

- **End Uses**
 - Cars, small vehicles
Example of gasoline Blending

Mogas Blending Overview

1156TA (Reformate)

<table>
<thead>
<tr>
<th>Quality</th>
<th>Current</th>
<th>Target</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E P50</td>
<td>115.44</td>
<td>115.11</td>
<td>deg C</td>
</tr>
<tr>
<td>RON</td>
<td>98.28</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>RVP</td>
<td>48.82</td>
<td>55.67</td>
<td>kPa</td>
</tr>
</tbody>
</table>

Line-Up Details

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Flow</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input From</td>
<td>HDR REF</td>
<td>0.1 t/hr</td>
<td></td>
</tr>
</tbody>
</table>

Max Tank Volume: 18517.0 m³
Current Tank Volume: 9650.0 m³
Percentage Filled: 52.1 %
Diesel Blending

• Stocks
 Usually 3-6 in number, e.g. CDU middle distillates, Hydrocracking streams, (The stocks are produced by mainly by CDU and Hydrocracking units)

• Products
 Light middle distillate fuel for special and general purpose, marine diesel, heavy distillate fuel

• Specifications
 Cetane Index, Pour Point, Cloud Point, Sulfur, Viscosity, 90% pt

• Mode
 Run-down to Tanks or Tanks-to-Tank Inline Blending

• End Uses
 Commercial vehicles, Construction equipments
Example of Diesel Blending
Kero Blending

- **Stocks**: Usually 3-6 in number, e.g. CDU Kero, Hydrocracker Kero, light Diesel
- **Products**: JET and JP products
- **Specifications**: Freeze pt, Flash pt
- **Mode**: Rundown-to-Tank Inline Blending
 \textit{(Impractical to blend in tank-to-tank mode)}
- **End Uses**: Aviation and home fuel
Example of Kero Blending

Kero Rundown Blending Systems Overview

<table>
<thead>
<tr>
<th>Quality</th>
<th>Current</th>
<th>Target</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLASHPT</td>
<td>39</td>
<td>38.8</td>
<td>deg C</td>
</tr>
<tr>
<td>FREEZEPT</td>
<td>-52.5</td>
<td>-52.5</td>
<td>deg C</td>
</tr>
</tbody>
</table>

Line-Up Details

- Input From: HDR-JET 290.9 h/hr

Max Tank Volume: 12939.0 m³
Current Tank Volume: 2912.0 m³
Percentage Filled: 22%
Fuel Oils Blending

- **Stocks**
 - Usually 3-6 in number
 - Light Cycle Oil (LCO), Slurry,
 - Base Fuel Oil (BFO) mostly from Vacuum Distillation Unit

- **Products**
 - LSFO, HSFO, Marine FO, Bunker FO, Boiler

- **Specifications**
 - Viscosity, API, Sulfur, Flash pt, Pour pt

- **Mode**
 - Tanks-to-Tank Inline Blending
 (Infeasible to blend in Run-down mode)

- **End Uses**
 - Ships, Boilers, Furnaces
Lube Oils Blending

- **Stocks**
 - Refined Base Oils (6-9 for a recipe)
 - Additives
 - Synthetic base Oils

- **Products**
 - 300-400 Grade formulations for all kinds of end uses

- **Specifications**
 - Viscosity, Insolubles, water, Total base Number (TBN), Salt, Total Acid Number (TAN)

- **Mode**
 - Tanks-to-Tank Inline Blending
 - *(Infeasible to blend in Run-down mode)*

- **End Uses**
 - Vehicles, machines
Example of stationary batch tank Lub inline-Blending

- Large number of formulations 300-400
- Up to 10,000 Batches per year
- Each batch size maximum 2-3 tons or
- Contamination is a big hazard issue
- Inline blender is economical only for lube plant capacity greater than 20,000 Tons/year
- Shorter blending hours
- Can meet product demands quickly as hold time is low
- Batch tank is stationary and requires lots of pipings and control valves
Example of Moving Batch Tank Lube-inline Blending

- It has moving batch tank
- Requires less number of pipings and valves
- Reduced labour requirement
- Better quality control
Naphtha Blending

- Blending of feed tanks to produce a feed of constant density.

- Blending of feed tanks to produce a feed of constant density to process units.
Summary

- Products blending is an important part of refining industry

- It offers flexibility to use stocks efficiently to meet product specs

- Gasoline blending is complex compared to others.

- Lube blending is characterized by large number of batches, formulations and smaller batch size, complex piping and valves