# Strategic Fuels Blending Management & Technology

# Self-Study Training Seminar Manual

SAMPLE

### **COURSE DIRECTOR**

Dr. Suresh S. Agrawal

President
Offsite Management Systems LLC
Houston, Texas, USA



3311 Stoney Mist Dr., Sugar Land, Texas, USA 77479 Tel: (281) 650-3707, Fax: (866) 450-4035

Email: info@globaloms.com, Web: www.globaloms.com

© 2000-2015 Offsite Management Systems LLC, All Rights Reserved No parts of this manual can be reproduced and distributed in any format.

# **Strategic Fuel Blending Management and Technology**

**Page** 

# Table of Contents Seminar Agenda

### **Day-1 Overview of Blending operation**

#### Session-1 Overview and fundamentals

- 1 Overview of Refining
- 2 Refinery Offsite Operations
- 3 Fuel Blending Operations in Refining
- 4 Blending Problems and Challenges

### Session-2 Blending field equipment

- 5 Blenders Configurations
- 6 Tank Farm and Automatic Tank Gauging System
- 7 Pumps, MOV's and Control Valves
- 8 Additives Control and Monitoring
- 9 Blend Header Design Considerations

# Session-3 Qualities Analysis and Measurements

- 10 Quality Relationships and Measurements
- 11 Lab Analysis of Stock and Product Qualities
- 12 Online Analysis of Stock and Header Qualities
- 13 Model Based Tank Qualities Measurement

### Session-4 All about octane and its measurements

- 14 The Mysteries of Octane
- 15 Octane Measurement by Knock Engine
- 16 Integrated Analyzers Technology and Applications
- 17 Octane Measurement by Spectrum based technology
- Comparison of Knock engine versus Spectrum based methods
- NIR and NMR versus CFR analyzers Selection and Cost Effectiveness

# **Strategic Fuel Blending Management and Technology**

### **Page**

# **Day-2 Advanced Blend Control, Optimization and Planning**

### Session-1 Linear and non-linear Blend Models

- 20 Linear Blend Models
- 21 Non-linear Blend Models
- 22 Methods to Handle Blend Non-linearity
- 23 Control Matrix of Qualities
- 24 Spectrum based Blend Indexes

### Session-2 Blend Optimization and Specifications

- 25 Advanced Blend Control Strategy
- 26 Blend Optimization
- 27 How to estimate and update Blending values
- 28 Gasoline, Diesel and Fuel Oils Specifications
- 29 Biofuels A perspective Part-I Gasohol
- 30 Biofuels A perspective Part-II Biodiesel

### Session-3 Regulatory Blend Control

- 31 Optimum Blend Control System Strategy
- 32 Regulatory Blend Control Operations
- 33 Blend Trim Control
- 34 Refinery-wide Planning & Scheduling

### Session-4 Offline Blend Optimization and Planning

- 35 Ethanol Blending
- 36 Offline Blend Planning and Optimization
- 37 Demonstration of An Offline Blend Optimizer System
- 38 Lab Exercise to solve an LP problem of a small refinery

# **Strategic Fuel Blending Management and Technology**

### **Page**

# **Day-3 Blending Project Justification and Implementation**

### Session-1 Online Blend Control and Optimization

- 39 Advanced Online Blend Control & Optimization
- 40 Control and Optimization of run-down blending system
- 41 Data Reconciliation and Feedback
- 42 Technology Set of Hardware and software
- 43 System Architecture Integration and Interfaces

### Session-2 Blending Project Justification

- 44 Where and how to start
- 45 Methodology to Assess the Current State of Blending
- 46 Identifications of Automation Areas
- The Quality giveaway Concept, Cost and reduction Benefits

### Session-3 Blending Project Implementation

- 48 Project Implementation Phases & Strategy
- 49 How to realize and sustain benefits
- 50 Required Enterprise Changes
- 51 Special Topic Blending and Hydrocarbon Management

# Session-4 Wrap-up and Winding down

- 52 Putting it All Together
- 53 Discussion Forum Individual Refinery Blending Operations

Feedback and Certificate Awards

# OMS-02 Strategic Fuels Blending Management and Technology Training Curicculum

|          | Day-1 Overview of Blending operation                                                           | D        | ay-2 Advanced Blend Control, Optimization and Planning  |           | Day-3 Blending Project Justification and Implementation     |  |  |
|----------|------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------|-----------|-------------------------------------------------------------|--|--|
|          | Session-1 Overview and fundamentals                                                            |          | Session-1 Linear and non-linear Blend Models            |           | Session-1 Online Blend Control and Optimization             |  |  |
| Module-1 | Overview of Refining                                                                           | Module-5 | Linear Blend Models                                     | Module-9  | Advanced Online Blend Control & Optimization                |  |  |
|          | Refinery Offsite Operations                                                                    |          | Non-linear Blend Models                                 |           | Control and Optimization of run-down blending system        |  |  |
|          | Fuel Blending Operations in Refining                                                           |          | Methods to Handle Blend Non-linearity                   |           | Data Reconciliation and Feedback                            |  |  |
|          | Blending Problems and Challenges                                                               |          | Control Matrix of Qualities                             |           | Technology Set of Hardware and software                     |  |  |
|          | <u> </u>                                                                                       |          | Gasoline, Diesel and Fuel Oils Specifications           |           | System Architecture - Integration and Interfaces            |  |  |
|          | Session-2 Blending field equipment                                                             |          | Session-2 Blend Optimization and Specifications         |           | Session-2 Blending Project Justification                    |  |  |
|          | Blenders Configurations                                                                        | Module-6 | Advanced Blend Control Strategy                         | Module-10 | Where and how to start                                      |  |  |
| Module-2 | Tank Farm and Automatic Tank Gauging System                                                    |          | Blend Optimization                                      |           | Methodology to Assess the Current State of Blending         |  |  |
|          | Pumps, MOV's and Control Valves                                                                |          | How to estimate and update Blending values              |           | Identifications of Automation Areas                         |  |  |
|          | Additives Control and Monitoring                                                               |          | Spectrum based Blend Indexes                            |           | The Quality giveaway - Concept, Cost and reduction Benefits |  |  |
|          | Blend Header Design Considerations                                                             |          | Biofuels - A perspective Part-I Gasohol                 |           |                                                             |  |  |
|          | · · · · · · · · · · · · · · · · · · ·                                                          |          | Biofuels - A perspective Part-II Biodiesel              |           |                                                             |  |  |
| lodule-3 | Session-3 Qualities Analysis and Measurements                                                  | Module-7 | Session-3 Regulatory Blend Control                      | Module-11 | Session-3 Blending Project Implementation                   |  |  |
|          | Quality Relationships and Measurements                                                         |          | Optimum Blend Control System Strategy                   |           | Project Implementation Phases & Strategy                    |  |  |
|          | Lab Analysis of Stock and Product Qualities                                                    |          | Regulatory Blend Control Operations                     |           | How to realize and sustain benefits                         |  |  |
|          | Online Analysis of Stock and Header Qualities                                                  |          | Blend Trim Control                                      |           | Required Enterprise Changes                                 |  |  |
| Σ        | Model Based Tank Qualities Measurement                                                         |          | Ethanol Blending                                        |           | Special Topic - Blending and Hydrocarbon Management         |  |  |
|          | Session-4 All about octane and its measurements                                                |          | Session-4 Offline Blend Optimization and Planning       |           | Session-4 Wrap-up and Winding down                          |  |  |
| ا 🚙 ا    | The Mysteries of Octane                                                                        | Module-8 | Refinery-wide Planning & Scheduling                     | 7         | Putting it All Together                                     |  |  |
| Module-4 | Octane Measurement by Knock Engine                                                             |          | Offline Blend Planning and Optimization                 | 7         | Discussion Forum - Individual Refinery Blending Operations  |  |  |
|          | Integrated Analyzers Technology and Applications                                               |          | Demonstration of An Offline Blend Optimizer System      | Ē         | Feedback and Certificate Awards                             |  |  |
|          | Octane Measurement by Spectrum based technology                                                |          | Lab Exercise to solve an LP problem of a small refinery | Module-12 |                                                             |  |  |
|          | Comparison of Knock engine versus Spectrum based methods                                       |          | ·                                                       |           |                                                             |  |  |
|          | NIR and NMR versus CFR analyzers - Selection and Cost Effectiveness                            |          |                                                         |           |                                                             |  |  |
|          | ·                                                                                              |          |                                                         |           |                                                             |  |  |
|          | Notes: Each topic duration is 20-30 minutes, Total number of slides are 800+                   |          |                                                         |           |                                                             |  |  |
|          | Copyright 2006-2015 Dr. Suresh S Agrawal, Offiste Management Systems LLC, All rights reserved. |          |                                                         |           |                                                             |  |  |

# Next enclosed is a sample slides from session-3 of the curriculum.

# **Topic Title**

# Fuel Blending Operations in Refinery





# Overview

- Products Yield
- Types of Blending
- Gasoline Blending
- Diesel Blending
- Kero Blending
- Fuel Oils Blending
- Lube Oils Blending
- Naphtha Blending



# **Products Distribution**

|               | Product                           | Gallons | % Yield |
|---------------|-----------------------------------|---------|---------|
|               | Still Gas                         | 1.89    | 4.26%   |
|               | Liquefied Refinery Gas            | 1.76    | 3.96%   |
|               | Naptha for Feedstocks             | 0.63    | 1.42%   |
|               | Special Naphthas                  | 0.13    | 0.29%   |
|               | Kerosene                          | 0.17    | 0.38%   |
|               | <b>Finished Aviation Gasoline</b> | 0.04    | 0.09%   |
|               | Kero-Type Jet Fuel                | 3.99    | 8.98%   |
|               | Finished Motor Gasoline           | 19.69   | 44.34%  |
|               | Distillate Fuel Oil               | 9.7     | 21.84%  |
|               | Other Oils for Feedstocks         | 0.5     | 1.13%   |
|               | Residual Fuel Oil                 | 1.76    | 3.96%   |
|               | Petroleum Coke                    | 2.14    | 4.82%   |
|               | Asphalt and Road Oil              | 1.34    | 3.02%   |
|               | Lubricants                        | 0.46    | 1.04%   |
| One Barrel of | Miscellaneous Products            | 0.17    | 0.38%   |
| Crude Oll     | Waxes                             | 0.04    | 0.09%   |
|               | Total                             | 44.41   | 100.00% |

1 BLS = 42 Gallons gains Volume due to decrease in Densities of Products.



# **Fuel Blending Operations in Refining**

# **Types of Products Blending**

- Gasoline (Mogas)
- Diesel (Middle-Distillate)
- Kerosene
- Fuel Oils
- Lube Oils



# **Gasoline Blending**

Stocks

Usually 6-12 in number, e.g. Naphtha, Reformate, FCC, HDS, Isomer, Alkylate, Butane, Isopentane, Merox, MTBE (The stocks are produced by various refinery process units)

Products

Leaded and Unleaded (leaded being phased out worldwide)

Regular - 78-82 Premium - 83-90

**Super Premium - 91-98 (Octane Grades)** 

Specifications

RON, MON, RDOI, RVP, 10%, 50%, 90%, S, Arom, Ole, Bnz, TOx, VOC, Lead

Mode

Tanks-to-Tank Inline Blending (Infeasible to blend in Run-down mode)

End Uses

Cars, small vehicles



### **Fuel Blending Operations in Refining**

# **Example of gasoline Blending**



Training Seminar
Strategic Fuel Blending
Management and Technology

# **Fuel Blending Operations in Refining**

# **Diesel Blending**

Stocks

Usually 3-6 in number, e.g. CDU middle distillates, Hydrocracking streams, (The stocks are produced by mainly by CDU and Hydrocrcaking units)

Products

Light middle distillate fuel for special and general purpose, marine diesel, heavy distillate fuel

Specifications

Cetane Index, Pour Point, Cloud Point, Sulfur, Viscosity, 90% pt

Mode

Run-down to Tanks or Tanks-to-Tank Inline Blending

End Uses

Commercial vehicles, Construction equipments

Training Seminar
Strategic Fuel Blending
Management and Technology

### **Fuel Blending Operations in Refining**

# **Example of Diesel Blending**



Training Seminar
Strategic Fuel Blending
Management and Technology

# **Fuel Blending Operations in Refining**

# **Kero Blending**

Stocks

Usually 3-6 in number, e.g. CDU Kero, Hydrocracker Kero, light Diesel

Products

**JET and JP products** 

Specifications

Freeze pt, Flash pt

Mode

Rundown-to-Tank Inline Blending (Impractical to blend in tank-to-tank mode)

End Uses

**Aviation and home fuel** 



# **Example of Kero Blending**



Training Seminar
Strategic Fuel Blending
Management and Technology

# **Fuel Blending Operations in Refining**



# **Fuel Oils Blending**

Stocks

Usually 3-6 in number
Light Cycle Oil (LCO), Slurry,,
Base Fuel Oil (BFO) mostly from
Vacuum Distillation Unit

Products

LSFO, HSFO, Marine FO, Bunker FO, Boiler

Specifications

Viscosity, API, Sulfur, Flash pt, Pour pt

Mode

Tanks-to-Tank Inline Blending (Infeasible to blend in Run-down mode)

End Uses

**Ships, Boilers, Furnaces** 



# **Lube Oils Blending**

Stocks

Refined Base Oils (6-9 for a recipe)
Additives
Synthetic base Oils

Products

300-400 Grade formulations for all kinds of end uses

Specifications

Viscosity, Insolubles, water, Total base Number (TBN), Salt, Total Acid Number (TAN)

Mode

Tanks-to-Tank Inline Blending (Infeasible to blend in Run-down mode)

End Uses

Vehicles, machines



# **Example of stationary batch tank Lub inline-Blending**



- Large number of formulations 300-400
- Up to 10,000 Batches per year
- Each batch size maximum 2-3 tons or
- Contamination is a big hazard issue
- Inline blender is economical only for lube plant capacity greater than 20,000 Tons/year
- Shorter blending hours
- Can meet product demands quickly as hold time is low
- Batch tank is stationary and requires lots of pipings and control valves



# **Example of Moving Batch Tank Lube-inline Blending**



- It has moving batch tank
- Requires less number of pipings and valves
- Reduced labour requirement
- Better quality control



# Naphtha Blending



 Blending of feed tanks to produce a feed of constant density.

 Blending of feed tanks to produce a feed of constant density to process units.



Slide - 15 OF 16

C3D1S1T3

Training Seminar
Strategic Fuel Blending
Management and Technology

### **Fuel Blending Operations in Refining**

# **Summary**

- Products blending is an important part of refining industry
- It offers flexibility to use stocks efficiently to meet product specs
- Gasoline blending is complex compared to others.
- Lube blending is characterized by large number of batches, formulations and smaller batch size, complex piping and valves

